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1. Introduction

Photons emitted by the quark-gluon plasma (QGP) created at the Relativistic Heavy Ion

Collider (RHIC), as well as in future heavy ion experiments at the Large Hadron Collider

(LHC), are expected to be an important probe of the plasma physics. Because of the finite

extent of the plasma ball and of the weakness of the electromagnetic coupling constant, once

a photon is produced it escapes essentially undisturbed, thus carrying valuable information

about local properties of the plasma at the point of emission [1].

At weak coupling, photon production in Quantum Chromodynamics (QCD) can be

studied by means of perturbation theory.1However, results from RHIC seemingly indicate

that the plasma created there does not behave as an almost free gas of quarks and gluons,

but rather as a strongly coupled liquid [3]. Consequently, understanding the spectrum

and rate of photon emission requires a non-perturbative calculation. This is currently

beyond the scope of analytical methods, and performing this calculation on the lattice is

problematic due to the real-time, Lorentzian-signature nature of the physics involved.

In view of the above, it is interesting to investigate photon production in the context

of the gauge/gravity correspondence [4]. Although the gravity dual of QCD itself is not

known, the duals of a large class of finite-temperature, strongly coupled, large-Nc SU(Nc)

gauge theories are known. One may hope that generic, universal features exhibited by such

theories may be useful indications as to the behaviour of QCD, at least in the regime of

strong coupling. With this in mind, ref. [5] studied photon production at strong coupling

in N = 4 super Yang-Mills (SYM), a four-dimensional theory with massless matter in

1See [2] for a complete result at leading order, and references therein for previous calculations.
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the adjoint representation, and ref. [6] calculated the rate of photon emission in a four-

dimensional theory with massless quarks. One purpose of this paper is to study the effect

of a non-zero quark mass on photon production.

In perturbative, weak-coupling calculations it is usually assumed that the temperature

T is high enough so that the thermal quark mass, of order
√

λT (with λ = g2
YMNc the ’t

Hooft coupling) is much larger than the bare, zero-temperature quark mass Mq, and so the

latter is effectively set to zero. Regardless of the precise temperature range in which this

is applicable, the very nature of this approximation assumes that quarks are well defined

quasi-particles to which physical properties such as a thermal mass can be meaningfully

assigned. This is true at sufficiently weak values of the coupling, but it is not necessarily

true at strong coupling. Well defined quasi-particle excitations certainly do not seem to

exist in the phases of interest of the holographic theories that we will consider [7, 8], and

they might not exist either in a QCD plasma at temperatures just above deconfinement.

Under these circumstances, the bare quark mass is better thought of as a microscopic

parameter on which the physics depends, but without a direct interpretation as the mass

of a physical quasi-particle. Examples of physical quantities that depend on the quark

mass through the dimensionless combination Mq/T include the entropy density [7, 8], the

shear viscosity [9], etc. We will see that the same is true for observables related to photon

production.

We will consider finite-temperature, SU(Nc) super Yang-Mills (SYM) theories coupled

to Nf flavours of fundamental matter whose bare mass is an adjustable parameter. The

fundamental matter includes both fermions and scalars, which we will refer to collectively

as ‘quarks’. Our goal is to study photon production as a function of the quark mass and

the photon frequency, to leading order in the electromagnetic coupling constant but non-

perturbatively in the SU(Nc) interactions. Note that, in addition to the quarks, the matter

content in these theories also includes adjoint fields. Since we would like to model as closely

as possible QCD, which has no adjoint matter, we will assume that the photon couples

directly only to the quarks, i.e., we will assign vanishing electric charge to the adjoint

matter.

In the limit of a small number of flavours, Nf ≪ Nc, the theories above possess a simple

dual description in terms of Nf Dq-brane probes in the gravitational background of Nc Dp-

branes [10]. At temperatures high enough so that the gluons (and the adjoint matter)

are deconfined, the gravitational background contains a black hole [11], represented by the

shaded blob in figure 1. In this deconfined phase, the fundamental matter may still be in

two different phases separated by a first-order phase transition [8].2

From the viewpoint of the holographic description, the basic physics behind this tran-

sition is easily understood. The asymptotic distance between the Dq-branes and the black

hole is proportional to the quark mass, whereas the size of the black hole horizon is propor-

tional to the temperature. Thus, for sufficiently small T/Mq, the Dq-branes are deformed

by the gravitational attraction of the black hole, but remain entirely outside the horizon in

2Specific examples of this transition were originally seen in [12, 13]. Aspects of these transitions were

independently studied in the D3/D7 system in [14, 15], and in a slightly different framework in [16].
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Figure 1: Possible embeddings for Dq-brane probes in the background of black Dp-branes. The

critical embedding is skipped over by the phase transition.

what we call a ‘Minkowski embedding’ (see figure 1). However, above a critical temperature

Tfun, the gravitational force overcomes the tension of the branes and these are pulled into

the horzion. We refer to such configurations as ‘black hole embeddings’. In between these

two types of embeddings there exists a ‘critical embedding’ in which the branes just ‘touch

the horizon at a point’. However, thermodynamic considerations reveal that a first-order

phase transition occurs between a Minkowski and a black hole embedding. In other words,

the critical embedding is skipped over by the phase transition, and near-critical embeddings

turn out to be metastable or unstable.

In the dual field theory, this phase transition is exemplified by discontinuities in phys-

ical quantities such as, for example, the quark condensate or the contribution of the fun-

damental matter to the entropy density. However, the most striking feature of this phase

transition is found in the spectrum of physical excitations of the fundamental matter. In

the low-temperature, Minkowski phase the spectrum is gapped and contains a discrete

set of deeply bound mesons ( i.e., quark-antiquark bound states) with masses of order

Mmes ∼ Mq/
√

λ. These mesons are dual to excitations supported on the probe branes —

see, e.g., [17 – 19]. In addition, the Minkowski-phase spectrum also contains well defined,

quark-like excitations described by strings stretching between the tip of the branes and

the horizon. These have masses of order Mq and are therefore parametrically heavier than

the mesons. Both sets of excitations are absolutely stable in the large-Nc, strong coupling

limit under consideration.

In the high-temperature, black hole phase stable mesons cease to exist. Rather one

finds a continuous and gapless spectrum of excitations [7, 8, 20, 21]. Hence the mesons

dissociate or ‘melt’ at the first order phase transition at Tfun, and beyond it no well defined,

quasi-particle notion of an individual quark exists, since a string stretching between any

point on the branes and the horizon will quickly fall through the horizon. In the gauge

theory this corresponds to the fact that any localised quark charge will quickly spread

across the entire plasma, thus losing its identity.

In this paper we will study photon production in the black hole phase. We will see

that this is proportional to NfNc, i.e., to the number of electrically charged degrees of

freedom, as one would expect. For Mq = 0 our result coincides with that of [5], except for

– 3 –
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the fact that in that reference the overall normalisation is set by N2
c , reflecting the fact

that electric charge is carried by adjoint degrees of freedom. We stress that the photon

production we will calculate is not a correction to an O(N2
c )-result but the leading result

in the large-Nc expansion, since in our case the adjoint matter is electrically neutral. We

will see that the gravity picture provides a simple, geometric explanation for the agreement

(up to normalisation) between our Mq = 0 result and that of [5].

We will not explicitly study photon production in the Minkowski phase, since we have a

clear expectation of what the result would be. Indeed, as explained above, in this phase the

spectrum consists of a discrete set of stable modes, so we expect the spectral function (2.4)

to be given by a sum of delta functions supported at appropriate values of the momentum.

We will confirm this expectation indirectly by calculating the spectral function for black

hole embeddings near the critical embedding (see figure 1).

In order to study photon production, one must in principle introduce a dynamical

photon that couples appropriately to the SU(Nc) fundamental matter and construct the

dual of the SU(Nc) × U(1)EM gauge theory thus obtained. However, we will see that, to

leading order in the electromagnetic coupling constant, photon production in the SU(Nc)×
U(1)EM theory is completely determined by correlators in the original SU(Nc) theory with

no dynamical photon. This observation allows the holographic calculation of the desired

correlators.

This paper is organised as follows. In section 2 we discuss how to calculate the rate of

photon production in a gauge theory at finite temperature. In section 3 we explain how to

use the holographic description in terms of a Dp/Dq system to study photon production

in the dual gauge theory. In sections 4 and 5 we present our results for the D3/D7 and the

D4/D6 systems, respectively. We conclude in section 6 with a discussion of our results and

their possible implications for heavy ion collision experiments.

2. Photon emission in a hot gauge theory

Consider a (d + 1)-dimensional SU(Nc) gauge theory with Nf flavours of fundamental

fermions Ψa and scalars Φa, a = 1, . . . , Nf, to which we will collectively refer as ‘quarks’.

Imagine coupling this theory to electromagnetism by introducing and additional, dynami-

cal, Abelian gauge field, the photon, that couples to the fundamental fields with strength

(electric charge) e.3 This new theory may be constructed by adding a kinetic term for the

photon and replacing the SU(Nc)-covariant derivative Dµ by Dµ = Dµ − ieAµ when acting

on the fundamental fields, with µ = 0, . . . , d. In this way we obtain an SU(Nc) × U(1)EM

gauge theory with Lagrangean

L = LSU(Nc) −
1

4
F2

µν + eAµJEM
µ , (2.1)

3For simplicity we assume that all the fundamental fields have equal mass and carry equal electric

charge, but our results can be generalised straightforwardly. Later we will consider SU(Nc) theories that

also contain adjoint matter. Since our goal is to model QCD, which has no such matter, we will assign

vanishing electric charge to the adjoint fields.
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(a) (b)

Figure 2: Diagrams contributing to the two-point function of electromagnetic currents (2.5). The

external line corresponds to a photon of momentum k. As explained in the text, to leading order

in the electromagnetic coupling constant only SU(Nc) fields ‘run’ in the loops represented by the

shaded blobs.

where Fµν = ∂µAν − ∂νAµ and the electromagnetic current is given by

JEM
µ = Ψ̄γµΨ +

i

2
Φ∗ (DµΦ) − i

2
(DµΦ)∗ Φ . (2.2)

A sum over flavour and colour indices is implicit in this formula. Note that the photon

field enters this current through the covariant derivative acting on the scalars.

In thermal equilibrium, the differential photon emission rate per unit time and volume,

at leading order in the electromagnetic coupling constant e, is then given by [22]

dΓ

ddk
=

e2

(2π)d 2|k| nB(k0)
d−1
∑

s=1

ǫµ
(s)(k)ǫν

(s)(k) χµν(k)|k0=k
, (2.3)

where k = (k0,k) is the photon null momentum,

χµν(k) = −2 Im GR
µν(k) (2.4)

is the spectral density, and

GR
µν(k) = −i

∫

dd+1x e−ik·x Θ(x0)〈[JEM
µ (x), JEM

ν (0)]〉 (2.5)

is the retarded correlator of two electromagnetic currents, whose diagramatic representation

(including photon fields as external legs) is given in figure 2. Finally,

nB(k0) =
1

ek0/T − 1
(2.6)

is the standard Bose-Einstein distribution function. Without loss of generality we will as-

sume that k points in the x1-direction, and we will denote by xi, i = 2, . . . , d the remaining

spatial directions. The polarisation vectors ǫµ
(s) may be chosen to be unit spatial vectors

orthogonal to k. Transversality of the correlator implies that the sum over polarisation

vectors in (2.3) may be replaced by the trace of the spectral function, i.e.,

χµ
µ(k) ≡ ηµνχµν(k) =

d−1
∑

s=1

ǫµ
(s)(k)ǫν

(s)(k)χµν(k) , (2.7)
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and rotational invariance ensures that this is given by

χµ
µ(k) = −2(d − 1) Im GR(k) , (2.8)

where

GR(k) ≡ 1

d − 1
δijGR

ij(k) . (2.9)

The trace of the spectral function also determines the electric conductivity as

σ =
e2

2(d − 1)
lim

k0→0

1

k0
χµ

µ(k)
∣

∣

k0=k
. (2.10)

Thus in order to study photon production we must in principle calculate the two-

point function (2.5) in the SU(Nc) × U(1)EM theory. However, as noted in [5], to leading

order in the electromagnetic coupling constant this reduces to a calculation purely within

the original SU(Nc) theory; this is the key observation that will allow us to perform this

calculation using the dual gravitational description, since the dual of the SU(Nc)×U(1)EM

theory is unknown. To see this, note first that the terms in the electromagnetic current

(2.2) proportional to the photon field (implicit in the covariant derivative) lead to higher-

order contributions in e to the correlator (2.5), and can thus be ignored to leading order in

e. Second, observe that the two-point function of the remaining terms in the current can be

calculated in the SU(Nc) theory, since again the effects of including the dynamical photon

are of higher order in e. Diagramatically, this means that no photon fields are present in

the shaded blobs in figure 2. An additional observation is the fact that the tadpole diagram

in figure 2 has no imaginary part and hence does not contribute to the desired spectral

function.

We therefore conclude that, to leading order in the electromagnetic coupling constant,

photon production in an SU(Nc) × U(1)EM theory is completely determined by the two-

point function of the electromagnetic current in the SU(Nc) theory. In the rest of the paper

we will calculate this correlator in SU(Nc) SYM theories coupled to fundamental matter.

3. Holographic description

In the decoupling limit, the black Dp-brane solution in the string frame takes the form

ds2 = H−1/2
(

−fdx2
0 + dx2

)

+ H1/2

(

dr2

f
+ r2dΩ2

8−p

)

,

eΦ = H
3−p
4 , C01...p = H−1 , (3.1)

where x = (x1, . . . , xp),

H(r) =

(

L

r

)7−p

, f(r) = 1 −
(r0

r

)7−p
, (3.2)

and L is a length scale (the AdS radius in the case p = 3). The horizon lies at r = r0. As

usual, regularity of the Euclidean section, obtained through x0 → ix0
E, requires that x0

E be

identified with period

1

T
=

4πL

7 − p

(

L

r0

)
5−p
2

. (3.3)

– 6 –
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In this paper it will be useful to work with a different radial coordinate u related to r

through

u =
1

2

(r0

r

)
7−p
2

, (3.4)

in terms of which f = 1 − 4u2 and the horizon lies at u = 1/2.

According to the gauge/gravity correspondence, string theory on the background above

is dual to (p+1)-dimensional, maximally supersymmetric Yang-Mills theory at temperature

T . In some cases one periodically identifies some of the ‘Poincare’ directions x in order

to render the theory effectively lower-dimensional at low energies; a prototypical example

is that of a D4-brane with one compact space direction. Under these circumstances a

different background with no black hole may describe the low-temperature physics, and

a phase transition may occur as T increases [11]. In the gauge theory this is typically

a confinement/deconfinement phase transition for the gluonic (and adjoint) degrees of

freedom. Throughout this paper we assume that T is high enough, in which case the gauge

theory is in the deconfined phase and the appropriate gravitational background is (3.1).

Consider now Nf ≪ Nc coincident Dq-brane probes that share d spacelike Poincaré

directions with the background Dp-branes and wrap an Sn inside the S8−p. We will assume

that the Dq-branes also extend along the radial direction, so that q = d + n + 1. We will

denote by xµ, with µ = 0, . . . , d, the directions common to both branes. In the gauge theory

the Dq-branes correspond to introducing Nf flavours of fundamental matter of equal mass

that propagate along a (d+1)-dimensional defect. To ensure stability, we will assume that

the Dp/Dq intersection under consideration is supersymmetric at zero temperature. Under

these conditions the Ramond-Ramond field sourced by the Dp-branes does not couple to

the Dq-branes. Two cases of special interest here are the D3/D7 (n = 3) [12] and the

D4/D6 (n = 2) [13] systems. If one of the D4 directions is compact, then both cases can

effectively be thought of as describing the dynamics of a four-dimensional gauge theory

with fundamental matter.

The U(Nf) gauge symmetry on the Dq-branes is a global, flavour symmetry of the gauge

theory. If this theory is coupled to electromagnetism as explained in the previous section

(in particular, if all flavours are assigned equal electric charge e), then the electromagnetic

current JEM
µ is the conserved current associated to the overall U(1) ⊂ U(Nf). In order to

study photon emission to leading order in e it suffices to evaluate the correlator (2.5) in

the SU(Nc) gauge theory with no dynamical photon.

At strong ’t Hooft coupling and large Nc, this correlator is easily calculated holograph-

ically. Indeed, global symmetries of the gauge theory are in one-to-one correspondence

with gauge symmetries on the gravity side, and each conserved current of the gauge theory

is dual to a gauge field on the gravity side [23]. Let Am, m = 0, . . . , q, be the guage field

associated to the overall U(1) gauge symmetry on the Dq-branes. Upon dimensional re-

duction on the n-sphere wrapped by the Dq-branes, Am gives rise to a massless gauge field

{Aµ, Au}, n massless scalars, and a tower of massive Kaluza-Klein (KK) modes. All these

fields propagate on the d + 2 non-compact dimensions of the Dq-branes. We will work in

the gauge Au = 0, and we will consistently set to zero the scalars and the higher KK modes,

since they are not of interest here. The gauge field Aµ is the desired dual to the conserved

– 7 –
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electromagnetic current JEM
µ of the gauge theory; just like the quarks are localised on a

defect inside the gauge theory, the dual gauge field is localised on the Dq-branes inside the

bulk spacetime.

According to the gauge/gravity correspondence, correlation functions of JEM
µ can be

calculated by varying the string partition function with respect to the value of Aµ at the

boundary of the spacetime (3.1). Under the present circumstances, the string partition

function reduces to eiS , where S is the sum of the supergravity action and the effective

action for the Dq-branes. Since Aµ does not enter the supergravity action, the form of this

action will not be needed here. Moreover, the Wess-Zumino part of the Dq-branes action

does not contribute for the brane orientations and the gauge field polarisations considered

in this paper. Therefore, it suffices to consider the Dirac-Born-Infeld part of the Dq-branes

action:

S = −NfTDq

∫

Dq
dq+1x e−φ

√

− det(g + 2πℓ2
sF ) , (3.5)

where g is the induced metric on the Dq-branes, F = dA is the overall U(1) field strength,

TDq = 1/(2πℓs)
qgsℓs is the Dq-brane tension, and ℓs and gs are the string length and

coupling constant, respectively. Since we are only interested in the two-point function (2.5),

we only need to keep terms up to quadratic order in the gauge field. We will therefore

work with the simpler action

S = −NfTDq

∫

Dq
dq+1x e−φ

√

− det g

(

1 +
(2πℓ2

s)
2

4
F 2

)

, (3.6)

where F 2 = FmnFmn.

The Dq-branes wrap an n-sphere in the directions transverse to the Dp-branes, so it

is convenient to write the metric on S8−p in adapted coordinates as

dΩ2
8−p = dθ2 + sin2 θ dΩ2

n + cos2 θ dΩ2
7−p−n . (3.7)

Setting ψ = cos θ, the Dq-branes embedding may then be specified as ψ = ψ(u). Asymp-

totically, i.e., as r → ∞ or u → 0, this behaves as [7, 8]

ψ(u) ≃ m u
2

7−p + c u
2n

7−p + · · · , (3.8)

where m and c are proportional to the quark mass and condensate, respectively (see below).

Since the gauge field enters the action (3.6) quadratically, turning on A induces a

correction δψ of order A2 on the branes embedding. When the action is evaluated on-shell,

this generates a boundary-term contribution of the form

δS =
∂L
∂ψ′

δψ

∣

∣

∣

∣

boundary

, (3.9)

where L is the Dq-branes Lagrangean density and ψ′ = dψ/du. Since δψ = O(A2), this

has in principle the right form to contribute to the two-point function (2.5). However, as

explained in [8], this contribution is proportional to δm, and hence vanishes because the

quark mass must be kept fixed in computing the correlator.

– 8 –
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We thus conclude that, in order to calculate the photon emission rate, we may consis-

tently proceed by first determining the Dq-branes embedding in the absence of the gauge

field, and then solving for the gauge field on that embedding. As explained above, we will

set to zero the components of the gauge field on the n-sphere wrapped by the Dq-branes.

Moreover, following [24], we will choose the gauge Au = 0, Fourier-decompose the d + 1

remaining components of the gauge field as

Aµ(x0,x, u) =

∫

dk0ddk

(2π)d+1
e−ik0x0+ik·x Aµ(k0,k, u) , (3.10)

and choose k to point in the x1-direction. Under these circumstances the equations of

motion for the Ai-components of the gauge field (i = 2, . . . , d) that follow from the action

(3.6) decouple from each other and from those for A0, A1. Setting Ai ≡ A(k, u), the

equation of motion takes the form

∂u

[

Q(u) ∂uA
]

+ k2
0

[

1 − f(u)
]

P (u)A = 0 , (3.11)

where we have made use of the fact that |k| = k0. The functions P (u), Q(u) depend on the

embedding ψ(u) and will be specified below. Eq. (3.11) may be consistently derived from

the ‘reduced’ action

S = −ÑDq

∫

dx0 ddx du
[

−P (u)(∂0A)2 + fP (u)(∂1A)2 + Q(u)(∂uA)2
]

, (3.12)

obtained from (3.6) by integrating over the n-sphere and setting ∂iA = 0. We will see

below that the normalisation constant in front of this action scales as ÑDq ∼ NfNcT
d−1

and determines the overall magnitude of photon production.

According to the prescription in [26, 27], the retarded correlator (2.9) is then given by

GR(ω) = −ÑDq lim
u→0

2Q(u)A∗(ω, u)∂uA(ω, u)

A∗(ω, 0)A(ω, 0)
, (3.13)

where ω ≡ k0/2πT and A(ω, u) is a solution of the equation of motion (3.11) obeying the

incoming-wave boundary condition at the horizon. The imaginary part of GR(ω), which is

all we need, is u-independent, and it is convenient to calculate it at the horizon instead of

at the boundary:

Im GR(ω) = − ÑDq

|A(ω, 0)|2
Im lim

u→ 1
2

2Q(u)A∗(ω, u)∂uA(ω, u) . (3.14)

Note that, although not explicitly indicated, several quantities above depend not only on

the photon frequency ω but also on the quark mass, since the equation of motion (3.11)

that determines A depends on the branes embedding through the functions P and Q.

4. The D3/D7 system

Here we will specialise the above discussion to the D3/D7 system. This intersection is

summarised by the array
0 1 2 3 4 5 6 7 8 9

D3: × × × ×
D7: × × × × × × × ×

(4.1)

– 9 –
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The corresponding gauge theory is four-dimensional N = 4 SYM coupled to Nf funda-

mental hypermultiplets. At zero temperature this theory is conformal (at leading order

in the large-Nc limit) and supersymmetric, and therefore very different from QCD. At fi-

nite temperature both supersymmetry and conformal invariance are broken, but at very

high temperatures QCD becomes asymptotically free, whereas the D3/D7 theory remains

strongly coupled (in the regime described by supergravity) at all energy scales, so the two

theories are again very different. However, at temperatures between Tdec and a few times

Tdec, where Tdec ≃ 175 MeV is the deconfinement temperature, QCD is probably in a rela-

tively strongly coupled quark-gluon plasma phase. Although the degrees of freedom in this

plasma differ from those in the strongly coupled D3/D7 plasma, one may hope that certain

properties of QCD in this regime may be well approximated by those of the D3/D7 system;

a prototypical example of one such property is the ratio between the shear viscosity and

the entropy density [25, 9]. This motivates us to study photon production in the D3/D7

system.

The metric (3.1) for black D3-branes takes the form

ds2 =
r2

L2

(

−fdx2
0 + dx2

)

+
L2

r2

dr2

f
+ L2dΩ2

5 , (4.2)

where

L4 = 4πgsNcℓ
4
s , f = 1 − r4

0

r4
, r0 = πTL2 . (4.3)

In this case the dimensionless coordinate (3.4) is4 u = r2
0/2r

2, in terms of which the metric

becomes

ds2 =
(πTL)2

2u

(

−fdx2
0 + dx2

)

+
L2

4u2

du2

f
+ L2dΩ2

5 . (4.4)

Specifying the D7-branes embedding through ψ = ψ(u), as explained above, the induced

metric takes the form

ds2
D7 =

(πTL)2

2u

(

−fdx2
0 + dx2

)

+
L2

(

1 − ψ2 + 4u2fψ′2
)

4u2f(1 − ψ2)
du2 + L2(1 − ψ2)dΩ2

3 . (4.5)

In this case the asymptotic behaviour of ψ is5

ψ(u) = m u1/2 + c u3/2 + · · · , (4.6)

where the dimensionless constants m and c are related to the quark mass and condensate,

respectively, through [7, 8]:

Mq =
r0m

23/2πℓ2
s

=
1

2

√
λ T m , (4.7)

〈O〉 = −23/2π3ℓ2
sNfTD7r

3
0 c = −1

8

√
λNf Nc T 3 c , (4.8)

4This is related to the coordinate used in [24] as 2uhere = u[24].
5In this limit, the coordinate u used here and the coordinate ρ used in [7, 8] are related through ρ2 = 1/u.
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with λ = g2
YMNc = 2πgsNc the ’t Hooft coupling. The operator O is a supersymmetric

version of the quark bilinear, and it takes the schematic form

O = Ψ̄Ψ + Φ†XΦ + MqΦ
†Φ , (4.9)

where X is one of the adjoint scalars. We will loosely refer to its expectation value as the

‘quark condensate’. A detailed discussion of this operator, including a precise definition,

can be found in the appendix of ref. [28].

Eq. (4.7) implies the relation m = M̄/T between the dimensionless quantity m, the

temperature T and the mass scale

M̄ =

√
2(2πℓ2

sMq)

πL2
=

2Mq√
λ

=
Mmes

2π
, (4.10)

where Mmes is the mass of the lightest meson ( i.e., the mass gap) in the discrete meson

spectrum at zero temperature [17 – 19, 13]. M̄ determines the scale of the temperature of

the phase transition for the fundamental degrees of freedom, Tfun ∼ M̄ , since the latter

takes place at m ∼ 1.

The functions P (u), Q(u) occurring in the reduced action (3.12) are given in this case

by

P (u) =
(1 − ψ2)

√

1 − ψ2 + 4u2fψ′2

uf(2πT )2
, Q(u) =

(1 − ψ2)2f

2
√

1 − ψ2 + 4u2fψ′2
, (4.11)

and the normalisation constant is

ÑD7 = ND7

4T (2πℓ2
s)

2

(πTL2)2
=

1

4
NfNcT

2 , (4.12)

where

ND7 =
NfTD7Ω3 r4

0

4T
=

1

32
λNfNcT

3 (4.13)

is the normalisation constant introduced in [7, 8] and Ω3 = 2π2 is the volume of a unit

three-sphere.

Analysis of eq. (3.11) near u = 1/2 reveals that the solution obeying the incoming-wave

boundary condition behaves as A ∼ (1 − 2u)−iω/2 near the horizon. We will thus seek a

solution of the form

A(ω, u) = (1 − 2u)−iω/2(1 + 2u)−ω/2 F (ω, u) , (4.14)

where F is a regular function of u and the second factor has been explicitly extracted for

convenience. Since the differential equation solved by A is linear, its overall normalisation

is arbitrary, and it cancels out in eqs. (3.13), (3.14). We choose to fix it by setting F equal

to unity at the horizon, i.e., F (ω, 1
2) = 1. Using the form of the solution (4.14) and this

normalisation choice for F , the limit on the right-hand side of (3.14) is readily calculated

with the result

lim
u→ 1

2

2Q(u)A∗(ω, u)∂uA(ω, u) =
2iω

(

1 − ψ2
0

)3/2

2ω
, (4.15)
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where ψ0 = ψ(1/2) is the value of ψ at the horizon. Thus the trace of the spectral density,

eq. (2.8), takes the form

χµ
µ(ω) = −4 Im GR(ω) = 8ÑD7

(

1 − ψ2
0

)3/2 ω

2ω |F (ω, 0)|2
. (4.16)

4.1 Massless quarks

Massless quarks correspond to the equatorial embedding ψ = 0. In this case

P (u) =
1

uf(u)(2πT )2
, Q(u) =

1

2
f(u) , (4.17)

and the equation of motion (3.11) becomes

(1 + 2u)2(1 − 2u)2 A′′ − 8u(1 + 2u)(1 − 2u)A′ + 8ω2uA = 0 , (4.18)

where ω = k0/2πT and a prime denotes differentiation with respect to u. Upon changing

variables as described in footnote 4, the equation of motion above agrees precisely with

eq. (5.5d) in [24]. The reason for this is that, for massless quarks, the induced metric (4.5)

on the D7-branes is exactly AdS5 ×S3. After reduction on the S3, the quadratic action for

the gauge field on the D7-branes is then, up to an overall normalisation, exactly the same

as that considered in [24] for a gauge field in AdS5. The normalisation constant we obtain

scales as ÑD7 ∼ NfNc, whereas that of [24] scales as N2
c . This merely reflects the difference

in the number of electrically charged degrees of freedom in the corresponding dual gauge

theories.

The solution of (4.18) satisfying the incoming-wave boundary condition was found in

ref. [5]:

A(ω, u) = (1 − 2u)−iω/2(1 + 2u)−ω/2
2F1

(

a, b, c;
1 − 2u

2

)

, (4.19)

where

a = 1 − (1 + i)
ω

2
, b = −(1 + i)

ω

2
, c = 1 − iω , (4.20)

and 2F1 is a hypergeometric function. Substituting into eq. (4.16) we obtain the result

χµ
µ(ω) =

8ÑD7 ω

2ω
∣

∣

2F1(a, b, c; 1
2 )

∣

∣

2 (4.21)

for the trace of the spectral density. A plot of the dimensionless combination χµ
µ(ω)/8ÑD7 ω

is given by the top, solid, red curve in figure 3.

4.2 Massive quarks

The action (3.6) for the D7-branes in the absence of a gauge field takes the form

SD7 ∝
∫

du
1

u3
(1 − ψ2)

√

1 − ψ2 + 4u2fψ′2 . (4.22)

By varying this with respect to ψ(u) one obtains a non-linear, second-order differential

equation for the D7-branes embedding. We were unable to solve this equation analytically
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Figure 3: D3/D7 system: Trace of the spectral function as a function of ω for (from top

to bottom on the left-hand side) m = {0, 0.6, 0.85, 0.93, 1.15, 1.25, 1.306}, or equivalently for

ψ0 = {0, 0.37, 0.53, 0.58, 0.75, 0.85, 0.941}. The last value corresponds to that at which the phase

transition from a black hole to a Minkowski embedding takes place. Recall that ÑD7 ∼ NfNcT
2.

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

m = M̄/T

χµ
µ(ω)

8ÑD7ω

Figure 4: D3/D7 system: Trace of the spectral function as a function of m for (from top to

bottom on the left-hand side) ω = {0, 0.6, 1.2, 1.4, 1.9, 4, 9}. The top, solid, red curve yields (up to

normalisation) the electric conductivity.

for Mq 6= 0, but a numerical solution was obtained in [7, 8]. This was done by integrating

the differential equation from the horizon towards the boundary for different values of

ψ0. From the value of the solution at the boundary one then reads off m(ψ0) and c(ψ0)
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according to (4.6). Using the solution ψ(u) and the ansatz (4.14) in (3.11) a differential

equation for F is obtained, which can again be integrated numerically. Substituting the

result in (4.16) yields the trace of the spectral function. Note that in eq. (4.16) one should

think of ψ0 as a function of m.

As shown in [7, 8], thermodynamically sta-

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

ψ0

m

Figure 5: Dimensionless ratio m = M̄/T

as a function of ψ0 in the range of values for

which stable black hole embeddings exist.

ble black hole embeddings for the D7-branes

exist for 0 ≤ ψ0 < 0.941, or equivalently for

0 ≤ m < 1.306, and in this parameter range

m is a monotonically increasing function of ψ0,

as exhibited in figure 5. For ψ0 > 0.941 or

m > 1.306 the free energy of the D7-branes

is minimised by a Minkowski embedding, and

so a first order phase transition occurs. Black

hole embeddings with 0.941 < ψ0 < 0.9621, or

equivalently with 1.306 < m < 1.3092, are ex-

pected to be metastable [20, 21], whereas those

with ψ0 > 0.9621 have negative specific heat

and are therefore unstable [8].

Converting the differential emission rate (2.3) to the emission rate per unit photon

energy and using (4.16) gives

dΓ

d k0
= 16αEMÑD7T

(

1 − ψ2
0

)3/2
w2

(e2πω − 1) 2ω |F (ω, 0)|2
. (4.23)

Our results for the spectral function and for the photon emission rate for thermodynam-

ically stable black hole embeddings are shown in figures 3, 4, and 6. Some interesting

features of these plots are as follows.

The top, solid, red curve in figure 3 corresponds to the analytic result (4.21) for massless

quarks. This is a monotonically decreasing function that for large frequencies decays as

ω−1/3. All curves with 0 ≤ m . 0.93 are also monotonically decreasing functions of the

frequency, whereas curves with 0.93 . m ≤ 1.306 are increasing functions of ω for small ω.

At large values of ω all curves seem to decay with the same power of the frequency as the

Mq = 0 curve, presumably due to the fact that at large ω the scale associated to the quark

mass becomes irrelevant. The behaviour at small ω can also be easily understood. As

ω → 0 the suppression factor
(

1 − ψ2
0

)3/2
in eq. (4.16) dominates, and so for small values

of ω the spectral density decreases monotonically with m, as shown in figure 4. This effect

is also responsible for the fact that the height of the peak of the photon emission curves in

figure 6 largely decreases as m increases from zero to its maximum value. The suppression

factor above has a simple geometric origin as the decreasing area of the induced black hole

horizon on the D7-branes as ψ0 increases, as can be seen from eq. (4.5).

Note that the top, solid, red curve in figure 4, which corresponds to ω = 0, gives (up

to normalisation) the electric conductivity (2.10). Specifically, denoting by h(m) the curve
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Figure 6: D3/D7 system: Photon emission rate as a function of ω for the same values of m as in

figure 3, i.e., for (from top to bottom) m = {0, 0.6, 0.85, 0.93, 1.15, 1.25, 1.306}.

in question, one has:

σ =
e2

4(2πT )

dχ

dω

∣

∣

∣

∣

ω=0

=
e2

4π
NfNcT h(m) . (4.24)

Again, the difference between our NfNc scaling and the N2
c scaling found in [5] reflects the

difference in the number of electrically charged degrees of freedom.

At intermediate values of ω the spectral function is not a monotonic function of m,

as can be seen in figure 4. In figure 3 this is reflected in the fact that curves for different
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Figure 7: D3/D7 system: Spectral function for non-stable black hole embeddings. The red curve

with the longest dashes corresponds to ψ0 = 0.9621, the green curve with intermediate dashes to

ψ0 = 0.979, the blue curve with the shortest dashes to ψ0 = 0.999996, and the solid, purple curve

to ψ0 = 0.9999981.

values of m cross each other around 1 . ω . 2. The same behaviour is of course observed

in the plot of the photon production shown in figure 6.

It is also interesting to examine the spectral function for black hole embeddings beyond

the phase transition, i.e., in the region in which these embeddings are metastable or

unstable. The results for the spectral function are shown in figure 7. The most remarkable

feature of these plots is the appearance of well defined peaks in the spectral function,

which become narrower and more closely spaced, seemingly approaching delta-functions,

as ψ0 → 1. We will discuss the interpretation of this fact in the last section.

5. The D4/D6 system

We now turn to the D4/D6 system, described by the array

0 1 2 3 4 5 6 7 8 9

D4 × × × × ×
D6 × × × × × × ×

(5.1)

In the decoupling limit, the resulting gauge theory is five-dimensional SYM coupled to fun-

damental hypermultiplets confined to a four-dimensional defect, so we have again d = 3.

In order to obtain a four-dimensional gauge theory at low energies, one may compactify

x4, the D4-brane direction orthogonal to the defect, on a circle or radius M−1
KK . If pe-

riodic boundary conditions for the adjoint fermions are imposed, then supersymmetry is

preserved and the four-dimensional theory thus obtained is non-confining. In this case the

appropriate dual gravitational background at any temperature is (3.1) with x4 periodi-

cally identified. Instead, if antiperiodic boundary conditions for the adjoint fermions are
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imposed, then supersymmetry is broken and the four-dimensional theory exhibits confine-

ment [11] and spontaneous chiral symmetry breaking [13]. The holographic description at

zero-temperature consists then of D6-brane probes in a horizon-free background, whose

precise form is not needed here. At a temperature Tdec ≃ MKK set by the Kaluza-Klein

scale, the theory undergoes a first order phase transition at which the gluons and the ad-

joint matter become deconfined. In the dual description the low-temperature background is

replaced by (3.1). If Tdec < Tfun, the D6-branes remain outside the horizon in a Minkowski

embedding. As T is further increased up to Tfun a first order phase transition for the

fundamental matter occurs.

Unfortunately, the Kaluza-Klein scale and the deconfinement scale cannot be decou-

pled from each other within the supergravity approximation. Strictly speaking, at energy

scales above Tdec ≃ MKK the adjoint fields in the D4/D6 gauge theory propagate in 4+1

dimensions. However, for a limited range of temperatures between Tdec and a few times

Tdec we may expect that only a few of the lightest Kaulza-Klein modes on the x4-circle

have a significant effect on the dynamics, and so we may still think of the theory in this

regime as a strongly coupled, four-dimensional plasma with a few additional fields. In

this sense one may hope that this system provides another model for QCD just above the

deconfinement temperature. Since the exact dual of QCD is unknown, it is interesting to

identify universal properties of strongly coupled QCD-like theories. This motivates us to

study photon production in the D4/D6 system and to compare the results to those for the

D3/D7 system.

Note that in the geometry (3.1) the x4-circle is non-contractible outside the horizon,

so one is free to choose periodic or antiperiodic boundary conditions for the fermions. As is

clear from the analysis below, this choice does not affect the results for photon production

in the approximations considered in this paper, so our results are valid for both choices of

boundary conditions.

The metric (3.1) for the black D4-brane is

ds2 =
r3/2

L3/2

(

−fdx2
0 + dx2

)

+
L3/2

r3/2

dr2

f
+ r1/2L3/2dΩ2

4 , (5.2)

where

L3 = πgsNcℓ
3
s , f = 1 − r3

0

r3
, r0 =

16

9
π2T 2L3 . (5.3)

The five-dimensional Yang-Mills coupling constant in the dual gauge theory is dimensionful

and given by g2
YM = 4π2gsℓs. It is convenient to introduce the dimensionless coordinate

u = r
3/2
0 /2r3/2, in terms of which the metric becomes

ds2 =
(r0

L

)3/2 1

2u

(

−fdx2
0 + dx2

)

+
L3/2r

1/2
0

(2u)1/3

(

4du2

9u2f
+ dΩ2

4

)

, (5.4)

with f = 1− 4u2. As before, the horizon is at u = 1/2 and the boundary at u → 0.6 Since

the D6-branes wrap a two-sphere in the directions transverse to the D4-branes, it is also

6The D4-brane metric considered in this section is not asymptotically of the form AdS times a sphere.

The framework for the calculation of correlators is less well developed for such backgrounds, so we will
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useful to write the metric on the four-sphere as

dΩ2
4 = dθ2 + sin2 θdΩ2

2 + cos2 θdϕ2 , (5.5)

and to set ψ = cos θ. The D6-brane embedding is then specified as ψ = ψ(u), in terms of

which the induced metric takes the form

ds2
D6 =

(

4

3
πTL

)3 1

2u
(−fdx2

0+dx2) +
4πTL3

3(2u)1/3

[(

4(1−ψ2)+9u2fψ′2

9u2f(1−ψ2)

)

du2+(1−ψ2)dΩ2
2

]

.

(5.6)

In eqs. (5.2) and (5.4) x = (x1, . . . , x4), whereas in (5.6) and all equations below in this

section x = (x1, . . . , x3).

As in the previous section, the branes embedding ψ(u) is determined by extremising

the action (3.6) with F = 0. Note that in this case there is a non-constant dilaton,

eφ =
(r0

L

)3/4 1√
2u

, (5.7)

reflecting the non-conformality of the dual gauge theory. Near the boundary,7 ψ(u) behaves

as

ψ(u) = m u2/3 + c u4/3 + · · · , (5.8)

where the dimensionless constants m and c are proportional to the quark mass and con-

densate, respectively [7, 8]:

Mq =
r0m

25/3πℓ2
s

=
21/3

32
geff(T )2 T m , (5.9)

〈O〉 = −25/3π2ℓ2
sNfTD6r

2
0c = −25/3

34
Nf Nc geff(T )2T 3c , (5.10)

with

geff(T )2 = λT = g2
YMNcT (5.11)

the effective ’t Hooft coupling at the scale T . In this case, we may write m = M̄2/T 2 with

M̄2 =
9

21/3

(

Mq

geff(Mq)

)2

≃ 7.143

(

Mq

geff(Mq)

)2

. (5.12)

The scale M̄ is again related to the mass gap in the meson spectrum of the D4/D6 system

at zero temperature through M̄ ≃ 0.233Mmes [19].

Following the previous section one obtains the equation of motion (3.11) with the

functions P (u), Q(u) given in this case by

P (u) =

√

1 − ψ2
√

1 − ψ2 + 9
4u2fψ′2

uf(2πT )2
, Q(u) =

(2u)1/3(1 − ψ2)3/2f

2
√

1 − ψ2 + 9
4u2fψ′2

. (5.13)

proceed by analogy with the AdS case. Presumably, however, this procedure can be made rigourous by

lifting the D4-brane geometry to M-theory, in which it becomes an M5-brane geometry whose asymptotic

form is AdS7 × S4. The D6-brane lifts in turn to a KK-monopole, whose worldvolume effective action can

be found in [29].
7In this limit, the coordinate u used here and the coordinate ρ used in [7, 8] are related through

ρ3/2 = 1/u.
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This equation of motion may be derived from the action (3.12), where

ÑD6 = ND6

3T (2πℓ2
s)

2

(

16
9 π2T 2L3

)2 =
1

3
NfNcT

2 , (5.14)

and

ND6 =
22

36
NfNcgeff(T )4T 3 (5.15)

is the normalisation constant introduced in [7, 8]. In this case eq. (4.15) becomes

lim
u→ 1

2

2Q(u)A∗(ω, u)∂uA(ω, u) =
2iω

(

1 − ψ2
0

)

2ω
(5.16)

and the trace of the spectral density, eq. (2.8), takes the form

χµ
µ(ω) = −4 Im GR(ω) = 8ÑD6

(

1 − ψ2
0

) ω

2ω |F (ω, 0)|2
. (5.17)

The action (3.6) for the D6-branes in the absence of a gauge field reduces to

SD6 ∝
∫

du
1

u3

√

1 − ψ2

√

1 − ψ2 +
9

4
u2fψ′2 . (5.18)

From this point one proceeds in complete analogy with the D3/D7 system, i.e., one solves

for the D6-brane embedding numerically and uses the result to solve, also numerically,

for the function F (ω, u). Substituting this in (5.17) one obtains the trace of the spectral

density.

In this case the phase transition takes place at ψ0 = 0.822 or m = 1.589. Below these

values black hole embeddings are stable, whereas for 0.822 < ψ0 < 0.907, or 1.589 < m <

1.630, they are presumably metastable. For ψ0 > 0.907 black hole embeddings possess a

negative specific heat and are therefore unstable [8]. The results for stable embeddings are

plotted in figures 8, 9 and 10, whereas those for metastable or unstable embeddings are

shown in figure 11. Remarkably, these plots share many of the qualitative features of the

D3/D7 system. We will come back to this in the next section.

6. Discussion

Results from heavy ion collision experiments at RHIC indicate that the QGP created

there behaves as a strongly coupled liquid. In the absence of systematic, non-perturbative

methods to calculate real-time observables in QCD, it is useful to calculate these observables

in gauge theories for which a gravity dual is known, the hope being that universal properties

of such theories may be shared by QCD itself.

In this paper we have calculated retarded correlators of electromagnetic currents at

light-like momenta in two large-Nc, strongly coupled SU(Nc) SYM theories with Nf flavours

of fundamental matter. From these correlators one may extract several observables asso-

ciated to photon production. Our results are valid to leading order in the electromagnetic
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Figure 8: D4/D6 system: Trace of the spectral function as a function of ω for (from top to

bottom on the left-hand side) m = {0, 1, 1.3, 1.45, 1.52, 1.56, 1.589}, or equivalently for ψ0 =

{0, 0.449, 0.608, 0.703, 0.755, 0.791, 0.822}.
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Figure 9: D4/D6 system: Trace of the spectral function as a function of m for (from top to

bottom on the left-hand side) ω = {0, 0.6, 0.97, 1.4, 1.9, 4, 9}. The top, solid, red curve yields (up

to normalisation) the electric conductivity.

coupling constant and in Nf/Nc, but non-perturbatively in the SU(Nc) interactions. At a

qualitative level, these results exhibit a number of universal features.

For small values of the quark mass the combination χµ
µ(ω)/ω is a featureless, mono-
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Figure 10: D4/D6 system: Photon emission rate as a function of ω for the same values of m as in

figure 8, i.e., for (from top to bottom) m = {0, 1, 1.3, 1.45, 1.52, 1.56, 1.589}.

tonically decreasing function of ω, as observed in figures 3 and 8. Instead, for large enough

values of m, χµ
µ(ω)/ω first increases with ω, then reaches a maximum and finally decays

as ω−δ for large ω. The exponent is however not universal: For the D3/D7 system one

has δ = 1/3, whereas for the D4/D6 one finds δ = 2/3. The model dependence of this

exponent suggests that the values above may not be indicative of the corresponding value

in the QCD plasma.

The qualitative behaviour of χµ
µ(ω)/ω as a function of m for fixed values of ω also

exhibits universal features. For small ω this is a monotonically decreasing function of m, as
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Figure 11: D4/D6 system: Spectral function for non-stable black hole embeddings. The red curve

with the longest dashes corresponds to ψ0 = 0.979, the green curve with intermediate dashes to

ψ0 = 0.9999, the blue curve with the shortest dashes to ψ0 = 0.999996, and the solid, purple curve

to ψ0 = 0.9999993.

displayed in figures 4 and 9; in particular, the top, solid, red curves in these figures, which

correspond to m = 0, yield (up to normalisation) the electric conductivity.8 Instead, for

intermediate values of ω, the spectral function as a function of m ceases to be monotonic.

In figures 3 and 8 this is reflected in the fact that curves for different values of m cross each

other. This is also the case for the photon production curves, as can be seen in figures 6

and 10. This is perhaps a counterintuitive result, as it means that, at certain frequencies,

plasmas with heavier quarks glow more brightly than those with lighter quarks.

Above we have calculated the rate of photon emission of an homogeneous, infinitely

extended, thermally equilibrated plasma. In order to extract a prediction for a physical

situation such as that of a heavy ion collision experiment, our results would have to be

integrated over the spacetime evolution of the plasma created in such experiments, as de-

termined by some hydrodynamic model [30]. In such a situation the temperature changes

over time (and space) from some initial, maximum temperature Tmax, to some final, min-

imum temperature Tmin, and one measures the total number of produced photons of a

given energy. This means that, unlike in the plots presented above, both ω and m vary

simultaneously as ω ∝ T−1 and m ∝ T−1 (for the D3/D7 system) or m ∝ T−2 (for the

D4/D6 system). Temperatures around Tmax ≃ 4Tdec are expected to be achieved at LHC,

whereas those at RHIC are roughly around 2Tdec, where Tdec ≃ 175 MeV is the deconfine-

ment temperature in QCD. On the other hand, Tdec is the lowest temperature for which

a plasma description is appropriate, since below such a temperature hadronisation occurs.

For illustrative purposes, let us therefore consider the photon emission predicted by our

8In the D4/D6 system the electric conductivity is σ = (e2/3π)NfNcT h(m), where h(m) is the top, solid,

red curve in figure 9.
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models as a function of T , for Tdec ≤ T ≤ 4Tdec and for fixed values of k0 and Mq. It is

then convenient to write

ω = γ1x , γ1 =
k0

2πTdec

, x =
Tdec

T
. (6.1)

Additionally, for the D3/D7 system we have

m = γ2x , γ2 =
Mmes

2πTdec

, (6.2)

whereas for the D4/D6 system

m = γ2x
2 , γ2 =

0.2332M2
mes

T 2
dec

. (6.3)

Recall that Mmes ∝ Mq is the typical mesonic scale in the gauge theory at zero temperature.

We are interested in the rate of photon production as x varies between 1/4 and 1 for

fixed values of γ1, γ2. Converting the differential emission rate (2.3) to the emission rate

per unit photon energy and using the results (4.16), (5.17) for the spectral functions gives

β1π
2

αEMNfNc(k0)2Tdec

dΓ

d k0
=

(1 − ψ2
0)

β2

x (e2πγ1x − 1) 2γ1x |F (γ1x, 0)|2
, (6.4)

where {β1 = 1, β2 = 3/2} for the D3/D7 system, {β1 = 3/4, β2 = 1} for the D4/D6 system,

and the factor (1 − ψ2
0) must be understood as a function of m(x).

The right-hand side of eq. (6.4) for the D3/D7 system is plotted in figure 12 for

several values of the photon energy and the mesonic scale Mmes. Specifically, the top graph

corresponds to k0 = 100 MeV, whereas the bottom graph corresponds to k0 = 1000 MeV.

The meson masses correspond to representative values in QCD for bound states of u and d

quarks, s quarks and c quarks: Mmes = Mπ(140 MeV),Mφ(1020 MeV),MJ/ψ(3096 MeV).

For comparison, we have also included curves for Mmes = 0 and Mmes = M∗, where M∗ ≃
0.766Tdec ≃ 1435 MeV is the critical mass (corresponding to m = 1.306) for which the phase

transition to a Minkowski embedding takes place exactly at T = Tdec. For Mmes = MJ/ψ

this transition takes place at Tfun ≃ 377 MeV > Tdec, and this is the reason why the dotted,

orange curve terminates at x = 175/377 ≃ 0.464: At this temperature the corresponding

quarks form mesonic bound states, i.e., in the string description the probe D7-branes jump

from a black hole to a Minkowski embedding. Figure 13 displays an analogous plot for the

D4/D6 system, for k0 = 100 MeV. In this case the dashed, green line also terminates at

T ≃ 188 MeV > Tdec, since for the D4/D6 system both the J/ψ and the φ mesons survive

as bound states above the deconfinement temperature [8].

One common feature of both models is that the rate of photon production is most

sensitive to the quark mass for low-energy photons and low temperatures. As we see

in figure 12, the difference between the curves is greater for k0 = 100 MeV than for k0 =

1000 MeV, and in the former case it is greater for low temperatures. We have verified that as

k0 increases above 1000 MeV, the difference between curves becomes smaller and smaller.

The same conclusion holds for the D4/D6 system. It is also remarkable that, contrary
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Figure 12: D3/D7 system: Photon emission rate as a function of T for fixed k0 and Mmes. The

top graph corresponds to k0 = 100MeV, whereas the bottom one corresponds to k0 = 1000MeV.

From top to bottom, the different curves correspond to Mmes = 0, 140, 1020, 1435, 3096MeV. Note

that the first two curves (solid red and blue dashed) are virtually coincident.

to what one might have perhaps expected, the rate of photon production associated to

heavier quarks is smaller than that of lighter quarks, but it is not negligibly smaller. For

example, we see in the figures above that the number of photons emitted by c quarks is a

significant fraction of the number of photons emitted by u and d quarks for a wide range

of temperatures.
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Figure 13: D4/D6 system: Photon emission rate as a function of T for k0 = 100MeV

and several values of Mmes: From top to bottom, the different curves correspond to Mmes =

0, 140, 947, 1020, 3096MeV. Note that the first two curves (solid red and blue dashed) are virtu-

ally coincident.

Before leaving our discussion of possible implications for heavy ion collision exper-

iments, we would like to emphasise that our results apply to photons produced by a

thermally equilibrated plasma. However, in heavy ion collisions there are other sources

of photon production. For example, prompt photons are produced by initial collisions of

the partons that constitute the colliding ions, whereas decay photons are produced by the

decay of certain hadrons once the plasma ball has hadronised. Thus comparison of any the-

oretical prediction for thermal photons to empirical data requires being able to distinguish

experimentally between these different sources.

The features described above refer to thermodynamically stable black hole embeddings,

but we also obtained results for metastable and unstable embeddings. These embeddings

are skipped over by the meson-melting phase transition, but they are still interesting since

they illustrate how the spectral function approaches that of Minkowski embeddings, as dis-

cussed in [21]. Results for the spectral function for several near-critical embeddings, i.e.,

for values of ψ0 close to 1, are displayed in figures 7 and 11. Clearly the spectral function

develops closely spaced, narrow peaks that seemingly approach delta-functions. Thus the

form of the spectral function appears to approach the form we expect for Minkowski em-

beddings,9 namely an infinite sum of delta functions supported at a discrete set of energies

k0 = |k|. Each of these delta-functions is associated to a meson mode on the Dq-branes

with null momentum. The existence of these modes may seem surprising in view of the fact

that, as expected on general grounds and as verified in ref. [8], the meson spectrum in the

9An analogous result was found in [21] for time-like momenta.
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski

embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar

meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds

to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 ≃ v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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zero baryon density black hole embeddings exist for all values of T and Mq, and so for large

Mq/T the spectral function of electromagnetic currents should again reveal high and narrow

peaks corresponding to the existence in the spectrum of long-lived vector mesons [32].
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